Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-{3-[2-(2,6-Difluorobenzyloxy)phenyl]-1*H*-pyrazol-1-yl}-4,6-dimethoxypyrimidine

Yuanxiang Li* and Chunping He

Chemistry and Chemical Engineering Department, Huaihua University, Huaihua 418008, People's Republic of China Correspondence e-mail: hhhhxylyx@yahoo.com.cn

Received 7 November 2007; accepted 17 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.063; wR factor = 0.152; data-to-parameter ratio = 17.5.

In the title compound, $C_{22}H_{18}F_2N_4O_3$, the pyrimidine and pyrazole rings are nearly coplanar [dihedral angle = 2.93 (15)°]. The dihedral angle between the pyrazole ring and its attached benzene ring is 33.75 (3)°. Offset π - π stacking interactions involving the pyrimidine rings help to establish the packing [centroid-centroid separations = 3.7845 (17) and 3.9069 (17) Å].

Related literature

For background, see: Duggleby & Pang (2000). For a related structure, see: Li & Wang (2007). For reference geometrical data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} C_{22}H_{18}F_{2}N_{4}O_{3}\\ M_{r}=424.40\\ Orthorhombic, Pccn\\ a=30.6872 \ (17) \ {\rm \AA}\\ b=7.4261 \ (4) \ {\rm \AA}\\ c=17.7703 \ (10) \ {\rm \AA} \end{array}$

Data collection

Bruker SMART 4K CCD areadetector diffractometer Absorption correction: none 37034 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.152$ S = 1.044949 reflections 282 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

4949 independent reflections

2807 reflections with $I > 2\sigma(I)$

V = 4049.6 (4) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.20 \times 0.08 \text{ mm}$

 $\mu = 0.11 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.074$

Z = 8

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL* (Bruker, 2001).

The authors are indebted to Professor Guang-Fu Yang. This work was supported by the National 973 Project (2003CB114400), the National NSFC (Nos. 20572030, 20528201 and 20432010), the Key Project of the Ministry of Education (No. 103116 and 104205) and the Program for Excellent Research Groups of Hubei Province (No. 2004ABC002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2639).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2001). SMART (Version 5.628), SAINT (Version 6.45) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Duggleby, R. G. & Pang, S. S. (2000). J. Biochem. Mol. Biol. 33, 1–36.

Li, Y.-X. & Wang, Y.-Z. (2007). Acta Cryst. E63, 0873–0874.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, o4856 [doi:10.1107/S1600536807060278]

2-{3-[2-(2,6-Difluorobenzyloxy)phenyl]-1H-pyrazol-1-yl}-4,6-dimethoxypyrimidine

Y. Li and C. He

Comment

Pyrimidine derivatives have broad biological properties: in particular pyrimidinylbenzoate is a highly effective herbicide with acetohydroxyacid synthase (AHAS) as target (Duggleby & Pang, 2000). We herein report the crystal structure of one such pyrimidine derivative, the title compound, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen *et al.*, 1987) and are in accordance with the corresponding values in similar compounds (Li & Wang, 2007). The pyrimidine ring A (N1,N2/C3–6) and pyrazole ring B (N3,N4/C7–9) in (I) are nearly coplanar with a dihedral angle of 2.93 (15)°. The dihedral angle between the pyrazole ring B (N3,N4/C7–9) and benzene ring C (C10—C15) is 33.75 (3)°. Benzene ring C (C10—C15) and benzene ring D (C17—C22) are nearly perpendicular with a dihedral angle of 86.74 (11)°.

Offset π - π stacking interactions involving the pyrimidine rings help to establish the packing. The adjacent rings have a centroid-centroid distance of 3.7845 (17)Å (symmetry: 1/2 - x, 3/2 - y, z) and 3.9069 (17)Å (1/2 - x, 5/2 - y, z), leading to stacks propagating in [010].

Experimental

The title compound was synthesized according to the literature method (Li & Wang, 2007). Colourless plates of (I) were obtained by slow evaporation of a dichloromethane solution at 283 K.

Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms).

Fig. 2. A packing diagram for (I).

2-{3-[2-(2,6-Difluorobenzyloxy)phenyl]-1*H*-pyrazol-1-yl}-4,6-dimethoxypyrimidine

$F_{000} = 1760$
$D_{\rm x} = 1.392 {\rm Mg m}^{-3}$
Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Cell parameters from 3255 reflections
$\theta = 2.4 - 20.0^{\circ}$
$\mu = 0.11 \text{ mm}^{-1}$
T = 298 (2) K
Plate, colourless
$0.35 \times 0.20 \times 0.08 \text{ mm}$

Data collection

Bruker SMART 4K CCD area-detector diffractometer	2807 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.074$
Monochromator: graphite	$\theta_{\text{max}} = 28.3^{\circ}$
T = 298(2) K	$\theta_{\min} = 1.3^{\circ}$
φ and ω scans	$h = -40 \rightarrow 40$
Absorption correction: none	$k = -9 \rightarrow 9$
37034 measured reflections	$l = -23 \rightarrow 23$
4949 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.063$	H-atom parameters constrained
$wR(F^2) = 0.152$	$w = 1/[\sigma^2(F_0^2) + (0.0506P)^2 + 1.5034P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
4949 reflections	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
282 parameters	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.21023 (11)	1.0322 (9)	-0.24781 (19)	0.165 (3)
H1A	0.1929	0.9303	-0.2334	0.248*
H1B	0.2106	1.0421	-0.3017	0.248*
H1C	0.1979	1.1397	-0.2266	0.248*
C2	0.35015 (9)	0.9178 (4)	0.06488 (17)	0.0748 (8)
H2A	0.3425	1.0316	0.0868	0.112*
H2B	0.3799	0.8902	0.0766	0.112*
H2C	0.3316	0.8254	0.0848	0.112*
C3	0.25983 (9)	1.0031 (5)	-0.14530 (16)	0.0826 (10)
C4	0.30104 (8)	0.9710 (5)	-0.11906 (16)	0.0784 (9)
H4	0.3246	0.9554	-0.1512	0.094*
C5	0.30535 (7)	0.9635 (4)	-0.04237 (15)	0.0572 (7)
C6	0.23425 (7)	1.0204 (3)	-0.02895 (14)	0.0481 (6)
N1	0.22532 (6)	1.0283 (3)	-0.10123 (12)	0.0657 (6)
C7	0.19998 (7)	1.0348 (4)	0.09684 (13)	0.0556 (7)
H7	0.2243	1.0116	0.1265	0.067*
C8	0.15884 (7)	1.0629 (4)	0.12144 (13)	0.0563 (7)
H8	0.1491	1.0619	0.1710	0.068*
С9	0.13382 (7)	1.0942 (3)	0.05642 (12)	0.0413 (5)
C10	0.08717 (7)	1.1413 (3)	0.04837 (12)	0.0405 (5)
C11	0.07378 (7)	1.2571 (3)	-0.00832 (12)	0.0479 (6)
H11	0.0945	1.3054	-0.0408	0.057*
C12	0.03068 (8)	1.3026 (3)	-0.01790 (14)	0.0538 (6)
H12	0.0224	1.3790	-0.0568	0.065*
C13	-0.00004 (7)	1.2338 (3)	0.03074 (14)	0.0550 (6)
H13	-0.0292	1.2646	0.0247	0.066*
C14	0.01201 (7)	1.1197 (3)	0.08842 (14)	0.0496 (6)
H14	-0.0088	1.0749	0.1215	0.060*
C15	0.05535 (7)	1.0726 (3)	0.09667 (12)	0.0432 (5)
C16	0.03880 (7)	0.8740 (4)	0.19954 (14)	0.0545 (7)
H16A	0.0156	0.8202	0.1702	0.065*
H16B	0.0262	0.9633	0.2330	0.065*
C17	0.06215 (6)	0.7331 (3)	0.24380 (12)	0.0465 (6)

C18	0.06393 (8)	0.5559 (4)	0.22116 (14)	0.0559 (7)
C19	0.08517 (9)	0.4232 (4)	0.25980 (17)	0.0691 (8)
H19	0.0854	0.3052	0.2423	0.083*
C20	0.10615 (8)	0.4699 (5)	0.32536 (17)	0.0729 (9)
H20	0.1209	0.3819	0.3526	0.087*
C21	0.10569 (8)	0.6437 (5)	0.35129 (15)	0.0700 (8)
H21	0.1197	0.6747	0.3959	0.084*
C22	0.08414 (8)	0.7694 (4)	0.30994 (14)	0.0575 (7)
F1	0.04302 (6)	0.5126 (2)	0.15660 (9)	0.0885 (6)
F2	0.08362 (6)	0.9420 (3)	0.33448 (10)	0.0943 (6)
N4	0.15827 (5)	1.0841 (3)	-0.00498 (10)	0.0439 (5)
N3	0.19907 (5)	1.0467 (3)	0.02097 (10)	0.0446 (5)
N2	0.27208 (6)	0.9881 (3)	0.00467 (11)	0.0498 (5)
01	0.25419 (7)	1.0092 (5)	-0.22035 (11)	0.1358 (13)
O2	0.34493 (5)	0.9270 (3)	-0.01474 (11)	0.0682 (5)
03	0.07009 (5)	0.9556 (2)	0.15119 (9)	0.0580 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.061 (2)	0.376 (8)	0.059 (2)	0.024 (3)	-0.0031 (17)	0.005 (3)
C2	0.0513 (15)	0.084 (2)	0.089 (2)	0.0069 (15)	-0.0063 (14)	0.0126 (17)
C3	0.0498 (16)	0.142 (3)	0.0562 (17)	0.0082 (17)	0.0094 (13)	-0.0038 (18)
C4	0.0448 (15)	0.124 (3)	0.0662 (19)	0.0101 (16)	0.0158 (13)	-0.0080 (18)
C5	0.0367 (12)	0.0624 (17)	0.0726 (18)	0.0046 (12)	0.0043 (12)	-0.0043 (14)
C6	0.0366 (12)	0.0525 (15)	0.0552 (15)	-0.0027 (11)	0.0071 (10)	-0.0009 (12)
N1	0.0411 (11)	0.107 (2)	0.0488 (13)	0.0050 (12)	0.0050 (9)	0.0010 (12)
C7	0.0423 (13)	0.0790 (19)	0.0455 (14)	-0.0006 (12)	-0.0066 (10)	-0.0010 (13)
C8	0.0416 (13)	0.087 (2)	0.0401 (13)	-0.0008 (13)	0.0010 (10)	-0.0021 (13)
C9	0.0375 (11)	0.0434 (14)	0.0428 (12)	-0.0018 (10)	0.0017 (10)	-0.0021 (10)
C10	0.0369 (11)	0.0440 (13)	0.0405 (12)	0.0022 (10)	0.0003 (9)	-0.0070 (10)
C11	0.0474 (13)	0.0510 (15)	0.0452 (13)	0.0006 (11)	0.0000 (10)	-0.0030 (11)
C12	0.0557 (14)	0.0509 (16)	0.0546 (15)	0.0093 (12)	-0.0123 (12)	-0.0008 (12)
C13	0.0409 (12)	0.0569 (16)	0.0672 (16)	0.0112 (12)	-0.0079 (12)	-0.0096 (13)
C14	0.0366 (12)	0.0549 (16)	0.0573 (14)	0.0045 (11)	0.0027 (10)	-0.0059 (12)
C15	0.0407 (12)	0.0443 (14)	0.0446 (12)	0.0054 (10)	0.0004 (10)	-0.0029 (11)
C16	0.0379 (12)	0.0705 (18)	0.0550 (15)	0.0000 (12)	0.0075 (11)	0.0057 (13)
C17	0.0348 (11)	0.0630 (17)	0.0416 (12)	-0.0061 (11)	0.0057 (9)	0.0055 (12)
C18	0.0460 (14)	0.073 (2)	0.0490 (14)	-0.0054 (13)	-0.0027 (11)	-0.0015 (13)
C19	0.0632 (17)	0.0643 (19)	0.080 (2)	0.0032 (14)	0.0038 (15)	0.0079 (16)
C20	0.0495 (15)	0.096 (3)	0.073 (2)	0.0051 (16)	0.0006 (14)	0.0332 (19)
C21	0.0552 (16)	0.102 (3)	0.0525 (16)	-0.0154 (16)	-0.0110 (13)	0.0122 (17)
C22	0.0497 (13)	0.0699 (19)	0.0528 (15)	-0.0138 (13)	0.0016 (12)	-0.0034 (14)
F1	0.0992 (13)	0.0920 (13)	0.0741 (11)	0.0054 (10)	-0.0285 (9)	-0.0261 (10)
F2	0.1061 (14)	0.0863 (14)	0.0906 (13)	-0.0140 (10)	-0.0164 (10)	-0.0257 (10)
N4	0.0342 (9)	0.0539 (12)	0.0437 (11)	0.0023 (8)	0.0000 (8)	-0.0013 (9)
N3	0.0330 (9)	0.0564 (13)	0.0442 (11)	-0.0013 (9)	0.0010 (8)	-0.0019 (9)
N2	0.0365 (10)	0.0533 (13)	0.0596 (12)	-0.0021 (9)	0.0028 (9)	-0.0007 (10)

01	0.0575 (13)	0.295 (4)	0.0543 (12)	0.0217 (18)	0.0104 (10)	-0.0055 (18)
02	0.0393 (9)	0.0869 (14)	0.0783 (13)	0.0109 (9)	0.0007 (9)	-0.0030 (11)
03	0.0346 (8)	0.0759 (12)	0.0634 (11)	0.0051 (8)	0.0073 (7)	0.0230 (9)
Geometric par	ameters (Å, °)					
C1—01		1.445 (4)	C10–	-C15	1.39	97 (3)
C1—H1A		0.9600	C11–	-C12	1.3	76 (3)
C1—H1B		0.9600	C11–	-H11	0.93	300
C1—H1C		0.9600	C12-	-C13	1.3	77 (3)
C2—O2		1.426 (3)	C12–	-H12	0.92	300
C2—H2A		0.9600	C13–	C14	1.38	30 (3)
C2—H2B		0.9600	C13–	-H13	0.92	300
C2—H2C		0.9600	C14-	-C15	1.38	33 (3)
C3—N1		1.330 (3)	C14-	-H14	0.93	300
C3—O1		1.346 (3)	C15-	-03	1.3	78 (3)
C3—C4		1.369 (4)	C16-	-03	1.42	24 (3)
C4—C5		1.370 (4)	C16–	-C17	1.49	93 (3)
C4—H4		0.9300	C16–	-H16A	0.9	700
C5—N2		1.332 (3)	C16–	-H16B	0.9	700
C5—O2		1.338 (3)	C17–	-C18	1.3	77 (4)
C6—N1		1.315 (3)	C17–	-C22	1.38	32 (3)
C6—N2		1.327 (3)	C18–	-F1	1.3:	53 (3)
C6—N3		1.411 (3)	C18–	-C19	1.30	67 (4)
C7—N3		1.351 (3)	C19–	-C20	1.3	75 (4)
C7—C8		1.352 (3)	C19–	-H19	0.93	300
С7—Н7		0.9300	C20–	-C21	1.3	71 (4)
C8—C9		1.407 (3)	C20–	-H20	0.9.	300
С8—Н8		0.9300	C21–	-C22	1.30	50 (4)
C9—N4		1.326 (3)	C21–	-H21	0.9.	300
C9—C10		1.480 (3)	C22–	-F2	1.3	54 (3)
C10—C11		1.387 (3)	N4—	N3	1.30	53 (2)
01—C1—H1A		109.5	C13–	-C12-H12	120	.3
O1—C1—H1B		109.5	C12–	-C13C14	120	.7 (2)
H1A—C1—H1	В	109.5	C12–	-C13-H13	119	.7
01—C1—H1C	_	109.5	C14-	-C13—H13	119	.7
H1A—C1—H1	C õ	109.5	C13–	-C14C15	119	.4 (2)
H1B—C1—H1	C	109.5	C13-	-C14H14	120	.3
02—C2—H2A		109.5	C15-	-C14H14	120	.3
02—C2—H2B		109.5	03—	C15—C14	123	.4 (2)
H2A—C2—H2	В	109.5	03—	CI5—CI0	115	.66 (18)
02—C2—H2C	~	109.5	C14-	-C15C10	121	.0 (2)
H2A—C2—H2	C	109.5	03—	CI6—CI7	107	.02 (17)
H2B—C2—H2	C	109.5	03—	CI6—HI6A	110	.5
NI - C3 - OI		118.5 (2)	C17–	-CI6-HI6A	110	.5
NI - C3 - C4		124.0(3)	03—	CIG-HI6B	110	.5
01 - 03 - 04		117.5 (2)	CT/		110	.5
$C_3 - C_4 - C_5$		115.8 (2)	HI6A		108	.0
C3—C4—H4		122.1	C18–	-C1/-C22	114	.0 (2)

С5—С4—Н4	122.1	C18—C17—C16	122.4 (2)
N2—C5—O2	119.6 (2)	C22—C17—C16	123.1 (2)
N2—C5—C4	123.0 (2)	F1—C18—C19	118.7 (3)
O2—C5—C4	117.5 (2)	F1—C18—C17	117.1 (2)
N1—C6—N2	129.1 (2)	C19—C18—C17	124.1 (2)
N1—C6—N3	116.7 (2)	C18—C19—C20	117.9 (3)
N2—C6—N3	114.3 (2)	С18—С19—Н19	121.1
C6—N1—C3	113.8 (2)	С20—С19—Н19	121.1
N3—C7—C8	107.0 (2)	C21—C20—C19	121.1 (3)
N3—C7—H7	126.5	C21—C20—H20	119.4
С8—С7—Н7	126.5	С19—С20—Н20	119.4
С7—С8—С9	105.6 (2)	C22—C21—C20	118.0 (3)
С7—С8—Н8	127.2	C22—C21—H21	121.0
С9—С8—Н8	127.2	C20-C21-H21	121.0
N4—C9—C8	110.95 (18)	F2—C22—C21	118.8 (3)
N4—C9—C10	118.74 (19)	F2—C22—C17	116.9 (2)
C8—C9—C10	130.3 (2)	C21—C22—C17	124.3 (3)
C11—C10—C15	117.77 (19)	C9—N4—N3	104.65 (17)
C11—C10—C9	120.2 (2)	C7—N3—N4	111.71 (17)
C15—C10—C9	122.0 (2)	C7—N3—C6	127.03 (19)
C12—C11—C10	121.8 (2)	N4—N3—C6	121.23 (18)
C12—C11—H11	119.1	C6—N2—C5	114.4 (2)
C10—C11—H11	119.1	C3—O1—C1	117.3 (2)
C11—C12—C13	119.3 (2)	C5—O2—C2	118.4 (2)
C11—C12—H12	120.3	C15—O3—C16	118.11 (16)
N1—C3—C4—C5	0.8 (5)	F1-C18-C19-C20	-179.9 (2)
O1—C3—C4—C5	-179.2 (3)	C17—C18—C19—C20	-0.1 (4)
C3—C4—C5—N2	-1.0 (5)	C18-C19-C20-C21	0.2 (4)
C3—C4—C5—O2	178.0 (3)	C19—C20—C21—C22	-0.5 (4)
N2-C6-N1-C3	-1.4 (4)	C20-C21-C22-F2	-179.5 (2)
N3—C6—N1—C3	179.8 (3)	C20—C21—C22—C17	0.8 (4)
O1—C3—N1—C6	-179.8 (3)	C18—C17—C22—F2	179.6 (2)
C4—C3—N1—C6	0.3 (5)	C16—C17—C22—F2	0.5 (3)
N3—C7—C8—C9	-0.7 (3)	C18—C17—C22—C21	-0.8 (3)
C7—C8—C9—N4	0.5 (3)	C16—C17—C22—C21	-179.9 (2)
C7—C8—C9—C10	-176.7 (2)	C8—C9—N4—N3	-0.1 (3)
N4-C9-C10-C11	-32.8 (3)	C10-C9-N4-N3	177.48 (19)
C8—C9—C10—C11	144.3 (3)	C8—C7—N3—N4	0.7 (3)
N4—C9—C10—C15	147.3 (2)	C8—C7—N3—C6	-177.6 (2)
C8—C9—C10—C15	-35.6 (4)	C9—N4—N3—C7	-0.3 (3)
C15-C10-C11-C12	-0.7 (3)	C9—N4—N3—C6	178.0 (2)
C9—C10—C11—C12	179.4 (2)	N1—C6—N3—C7	176.1 (2)
C10-C11-C12-C13	1.0 (4)	N2—C6—N3—C7	-3.0 (3)
C11—C12—C13—C14	-0.3 (4)	N1—C6—N3—N4	-2.0 (3)
C12-C13-C14-C15	-0.8 (4)	N2—C6—N3—N4	178.9 (2)
C13—C14—C15—O3	-1781(2)	N1—C6—N2—C5	1.2 (4)
	170.1 (2)		
C13-C14-C15-C10	1.2 (3)	N3—C6—N2—C5	-179.9 (2)
C13—C14—C15—C10 C11—C10—C15—O3	1.2 (3) 178.9 (2)	N3—C6—N2—C5 O2—C5—N2—C6	-179.9 (2) -178.9 (2)

C11—C10—C15—C14	-0.5 (3)	N1—C3—O1—C1	-3.6 (6)
C9-C10-C15-C14	179.5 (2)	C4—C3—O1—C1	176.4 (4)
O3—C16—C17—C18	-93.3 (3)	N2—C5—O2—C2	-0.7 (4)
O3—C16—C17—C22	85.8 (3)	C4—C5—O2—C2	-179.8 (3)
C22-C17-C18-F1	-179.9 (2)	C14—C15—O3—C16	2.5 (3)
C16-C17-C18-F1	-0.7 (3)	C10-C15-O3-C16	-176.8 (2)
C22-C17-C18-C19	0.4 (3)	C17—C16—O3—C15	170.8 (2)
C16—C17—C18—C19	179.6 (2)		

Fig. 2